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Abstract In this work we investigate interannual variations in lower stratospheric ozone from 1984 to
2016 based on a satellite‐derived data set and simulations from a chemical transport model. An empirical
orthogonal function (EOF) analysis of ozone variations between 2000 and 2016 indicates that the first,
second, and third EOF modes are related to the quasi‐biennial oscillation (QBO), canonical El
Niño–Southern Oscillation (ENSO), and ENSO Modoki events, respectively; these three leading EOFs
capture nearly 80% of the variance. However, for the period 1984–2000, the first, second, and third modes are
related to the QBO, ENSO Modoki, and canonical ENSO events, respectively. The explained variance
of the second mode in relation to ENSO Modoki is nearly twice that of the third mode for canonical ENSO.
Since the frequency of ENSO Modoki events was higher from 1984 to 2000 than after 2000, the
Brewer‐Dobson circulation anomalies related to ENSO Modoki were stronger during 1984–2000, which
caused ENSO Modoki events to have a greater effect on lower stratospheric ozone before 2000 than after.
Ozone anomalies associated with QBO, ENSO Modoki, and canonical ENSO events are largely caused by
dynamic processes, and the effect of chemical processes on ozone anomalies is opposite to that of dynamic
processes. Ozone anomalies related to dynamic processes are 3–4 times greater than those related to
chemical processes.

1. Introduction

Stratospheric ozone absorbs solar radiation in the ultraviolet range of light, thereby protecting life on
Earth (e.g., Kerr & McElroy, 1993; Lubin & Jensen, 1995) and affecting atmospheric temperature via
radiative heating (e.g., Forster et al., 1997; Haigh, 1994; Ramaswamy et al., 1996; Tian et al., 2010). At
the same time, radiative heating affects stratospheric circulation. Circulation anomalies can transport heat
downwards and thereby influence troposphere weather and climate (e.g., Baldwin & Dunkerton, 2001;
Cagnazzo et al., 2009; Graf & Walter, 2005; Ineson & Scaife, 2009; Karpechko et al., 2014; Kidston
et al., 2015; Reichler et al., 2012; Son et al., 2008; Thompson et al., 2011; Wang et al., 2013; Wang
et al., 2018; Xie et al., 2016; Zhang et al., 2016). Through these processes and interactions, stratospheric
ozone has a profound impact on the climate system. Therefore, an understanding of ozone variability
is still an active research topic.

WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion (2018) has reported
that the upper stratospheric ozone has increased from 1995 to 2016. However, ozone in the lower strato-
sphere still showed a continuing declining trend (Ball et al., 2017, 2018; Gebhardt et al., 2014; Kyrölä
et al., 2013; Nair et al., 2015; Sioris et al., 2014; Vigouroux et al., 2015; Zhang et al., 2018). In addition to
trends, the interannual variations in lower stratospheric ozone also require detailed investigations, since
the changes in lower stratospheric ozone can significantly influence climate change (Forster et al., 1997;
Hu et al., 2015; Polvani et al., 2017). However, the interannual variations of lower stratospheric ozone and
its relevant control factors for the period from 1995 to 2016 have not received enough attention.
Moreover, a better understanding of the factors influencing interannual variations of ozone in the lower stra-
tosphere will help us to accurately estimate the change of ozone in the future.

It is well‐known that the El Niño–Southern Oscillation (ENSO) is one of the important processes controlling
the interannual variations of stratospheric ozone by affecting the tropical stratospheric circulation (Fusco &
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Salby, 1999). The enhanced tropical upwelling warms the upper troposphere and cools the lower strato-
sphere in the tropics during El Niño phases (Calvo et al., 2010; Free & Seidel, 2009; Garcia‐Herrera et al.,
2006; Randel et al., 2009), influencing coherent tropical ozone and water vapor (Fueglistaler & Haynes,
2005; Geller et al., 2002; Gettelman et al., 2001; Hatsushika & Yamazaki, 2003; Scaife et al., 2003; Xie
et al., 2012). The Aleutian Low in the Pacific North American pattern deepens (e.g., Garcia‐Herrera et al.,
2006), and the vertical propagation of ultralong Rossby waves is intensified during El Niño activity in the
Northern Hemisphere (NH) in winter. Observational data set shows anomalous increased wave dissipation
in the stratosphere in the NH middle and high latitudes, warming Arctic stratosphere (Camp & Tung, 2007;
Free & Seidel, 2009; Garfinkel & Hartmann, 2007, 2008; Ren et al., 2012; Van Loon & Labitzke, 1987; Wei
et al., 2007) and cooling the equatorial stratosphere (Li et al., 2016), which were also supported by the simu-
lations (Garcia‐Herrera et al., 2006; Garfinkel et al., 2013; Hamilton, 1995; Manzini et al., 2006; Rao & Ren,
2016; Sassi et al., 2004; Taguchi & Hartmann, 2006; Xie et al., 2012). The enhanced Brewer‐Dobson (BD) cir-
culation is associated with the polar warming during El Niño events (Brewer, 1949), which transports more
tropical ozone from the source regions to high polar latitudes. Both observations and simulations show that
total column ozone (TCO) is accumulated at Arctic and midlatitude sites during El Niño events
(Brönnimann et al., 2004, 2006; Cagnazzo et al., 2009). La Niña activity has the opposite effect on the middle
latitude and polar stratosphere (Free & Seidel, 2009; Mitchell et al., 2011; Iza & Calvo, 2015; Iza et al., 2016;
Zhang et al., 2015).

In recent decades, a change in the ENSO anomaly pattern, named the Central Pacific type (or ENSO
Modoki), which is distinct from the familiar Eastern Pacific type (canonical ENSO), has been gradually dis-
covered (Ashok & Yamagata, 2009; Yeh et al., 2009). The climatic effects of ENSO Modoki on stratospheric
circulation and ozone are different from canonical ENSO because of the different spatial patterns of sea sur-
face temperature (SST) anomalies (SSTAs) between the two events (Hegyi & Deng, 2011; Hurwitz, Newman,
et al., 2011; Hurwitz, Song, et al., 2011; Iza & Calvo, 2015; Sung et al., 2014; Xie et al., 2012; Xie, Li, Tian, &
Shu, 2014; Xie, Li, Tian, & Sun, 2014; Zubiaurre & Calvo, 2012).

In addition to ENSO, the quasi‐biennial oscillation (QBO) also controls the interannual variations of stra-
tospheric ozone. The QBO is a downward‐propagating oscillating pattern of equatorial stratospheric
winds and temperatures with a period of around 2 years. Reed (1964) found that the QBO would induce
the meridional circulation and then drive a QBO signal in TCO. In the easterly phase, defined as a des-
cending QBO, enhanced upwelling at the equator in the lower stratosphere would lead to a negative
anomaly in column ozone. However, during the QBO westerly phase, there would be a positive column
ozone anomaly caused by reversed circulation. Subsequently, the temporal and spatial characteristics of
the QBO signal in stratospheric ozone have been analyzed, including the mechanism of how the QBO
influences ozone. At the same time, a large number of related studies have been performed with obser-
vations and simulations (e.g., Butchart et al., 2003; Lee et al., 2010; Randel & Wu, 1996; Tian
et al., 2006).

Although it is known that ENSO and the QBO affect the interannual variations in stratospheric ozone, the
different contributions of these factors on lower stratospheric ozone changes in the period 2000–2016 is still
unclear. Furthermore, it is also important to investigate whether the relative influences of these factors on
ozone interannual variability are changing over time by comparing their contributions to ozone changes
during this period with pre‐2000. We address these issues in this work. The paper is organized as follows.
Section 2 describes the observational and simulation data sets and ourmethods. In section 3, we show results
for the different contributions of factors to lower stratospheric ozone variation. The relevant mechanisms for
interannual variations in ozone are analyzed in section 4. Finally, we discuss the results and draw conclu-
sions in section 5.

2. Data, Methods, and Models

Monthly mean ozone is taken from the Stratospheric Water and Ozone Satellite Homogenized
(SWOOSH) data set, which is a merged record of stratospheric ozone and water vapor measurements
taken by a number of limb sounding and solar occultation satellites over the period from 1984 to 2013
(Davis et al., 2016). Its primary product is a monthly mean zonal‐mean gridded data set (2.5° from
89°S to 89°N) containing ozone and water vapor data from the SAGE‐II/III, UARS HALOE, UARS
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MLS, and Aura MLS instruments. The vertical pressure range of the
ozone data is 316–1 hPa (31 levels). For more information, see Davis
et al. (2016).

The QBO index is defined as the zonal average of the 30‐hPa zonal
wind at the equator as computed from the NCEP/NCAR Reanalysis
(Randel & Wu, 1996; Wallace et al., 1993). The zonal mean wind is
less than −5 m/s in the easterly phase of the QBO and greater than
5 m/s in the westerly phase of the QBO. The monthly NINO3.4 and
Modoki indices (hereafter EMI) are used to represent monthly
characteristics of canonical ENSO events and ENSO Modoki events,
respectively. The NINO3.4 index is defined as the area‐mean SSTAs
over the region (5°N to 5°S, 120–170°W) and is available at http://
www.cpc.noaa.gov/data/indices/. A standardized NINO3.4 index
greater than 1 standard deviation (STD) is defined as a canonical El
Niño event, and an index less than −1 STD is defined as a canonical
La Niña event.

The EMI was defined as follows (Ashok et al., 2007):

EMI ¼ SSTA½ �C–0:5× SSTA½ �E–0:5× SSTA½ �W:

Terms in the formula represent the area‐mean SSTA. [SSTA]C is the mean
over the central Pacific region (10°S to 10°N, 165°E to 140°W), [SSTA]E is
over the eastern Pacific region (15°S to 5°N, 110–70°W), and [SSTA]W is
over the western Pacific region (10°S to 20°N, 125–145°E). SSTs were
obtained from the Met Office Hadley Center SST data set (www.metof-
fice.gov.uk/hadobs/index.html). A standardized EMI greater than 1 STD
is defined as an El Niño Modoki event, and an EMI less than −1 STD is
defined as a La Niña Modoki event.

Edmon et al. (1980) calculated the BD circulation in a pressure coordinate
system:

v* ¼ v− v′θ′
� �

=θp
h i

p
;

ω* ¼ ωþ a cosφð Þ−1 cosφ v′θ′=θp
� �h i

φ
;

where θ is the potential temperature, a is the radius of the Earth, v is the
mean meridional wind, andω is average vertical velocity. The subscripts p
and φ represent derivatives with pressure p and latitude φ, respectively.
The overbar denotes the zonal mean, and the prime denotes the devia-
tions from the zonal mean value.

The following approximation (Xie, Li, Tian, Zhang, & Sun, 2014) deter-
mines the effective number (Neff) of degrees of freedom (Bretherton
et al., 1999) in this paper:

1

Neff ≈
1
N

þ 2
N

∑
N

j¼1

N−j
N

ρXX jð ÞρYY jð Þ;

where N is the sample size and ρXX and ρYY are the autocorrelations of two sampled time series, X and Y, at
time lag j, respectively.

Figure 1. EOF analysis of zonal mean ozone variability for the period
2000–2016 based on Stratospheric Water and Ozone Satellite Homogenized
data covering 50°S to 50°N and 100–50 hPa. Ozone anomalies were obtained
by removing the annual cycle and linear trend from the original time
series at each grid cell. The square root of the cosine of latitude was used for
the weighting function in the EOF analysis. (a) The spatial pattern of the
first EOF mode (EOF1). The value in the upper right corner is the explained
variance of the mode. (b) The first principal component (PC1; black line)
and the QBO index (red line). (c) Lead‐lag correlation between PC1 and the
QBO index for 2000–2016. Positive lead‐lag values indicate that the QBO
index leads PC1. The dotted lines denote the 95% confidence interval with
statistical significance determined using the two‐tailed Student's t test.
EOF = empirical orthogonal function; PC = principal component;
QBO = quasi‐biennial oscillation.
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We use the TOMCAT/SLIMCAT three‐dimensional offline chemical
transport model (Chipperfield, 2006) to perform EOF analyses and
investigate the dynamic and chemical processes involved in ozone varia-
bility. The model has identical stratospheric chemistry and aerosol load-
ing, solar flux input, and surface mixing ratios of long‐lived source gases
as Chipperfield et al. (2018). The model was run from 1979 to 2016. The
model uses horizontal winds and temperature from the reanalysis data
of the European Centre for Medium‐Range Weather Forecasts
(ECMWF)‐Interim (Dee et al., 2011). Previous studies have found that
the wind and temperature fields from the ECMWF‐Interim reanalysis
agree well with those from the Modern‐Era Retrospective analysis for
Research and Applications, version 2 (MERRA2), especially in middle
and high latitudes (Lindsay et al., 2014; Rienecker et al., 2011). The
long‐term simulation (1979–2015) was performed with a coarse horizon-
tal resolution of approximately 5.625° latitude × 5.625° longitude and 32
levels from the surface to 60 km. The model uses a hybrid σ − p vertical
coordinate (Chipperfield, 2006) with detailed tropospheric and strato-
spheric chemistry. Vertical advection is calculated from the divergence
of the horizontal mass flux (Chipperfield, 2006), and chemical tracers
are advected, conserving second‐order moments (Prather, 1986). The
TOMCAT/SLIMCAT model has been extensively evaluated against var-
ious ozone satellite and sounding data sets and provides a good repre-
sentation of stratospheric chemistry (e.g., Chipperfield, 2006; Feng
et al., 2007, 2011). The TOMCAT/SLIMCAT simulation initializes a
“passive odd‐oxygen” tracer that is set equal to the modeled chemical
Ox = O(3P) + O(1D) + O3 concentration on 1 December every year
for the NH and then advected passively without chemistry. At any point
after 1 December, the difference between this passive Ox and the mod-
el's chemically integrated Ox is the net chemical Ox change in air that
has been advected to that point (Feng et al., 2005). Ox is mainly O3

below 30 km, where the concentrations of O (3P) and O (1D) are small,
especially in winter when there is no sunlight in the polar region.
Hereafter, the passive Ox is referred to as “dynamic ozone,” while the
difference between the chemically integrated Ox and passive Ox is called
“chemical ozone.”

3. Factors Influencing the Interannual Variations in
Lower Stratospheric Ozone

We first performed an EOF analysis of lower stratospheric ozone
anomalies to investigate the EOF spatial patterns, principal compo-
nents (PCs), and possible relevant impact factors of the corresponding

three leading modes. We used SWOOSH data for the period 2000–2016, covering 50°S to 50°N and 100–
50 hPa. Ozone anomalies were obtained by removing the annual cycle and linear trend from the origi-
nal time series at each grid cell (not shown). The square root of the cosine of latitude was used for the
weighting function in the EOF analysis. The first mode, which accounts for 41.2% of the variance, has a
tripole pattern, that is, a positive phase of ozone in the tropical lower stratosphere at 20°S to 40°N and
negative phases in the middle latitudes of both hemispheres at 50–20°S and at 40–50°N (Figure 1a).
Note that the amplitude of ozone phase in the Southern Hemisphere (SH) is much larger than that
in the NH. PC1 variations show a QBO signal (Figure 1b). When the QBO leads PC1 by 1 month,
the correlation coefficient between PC1 and the QBO index is 0.75 and significant at the 95% confidence
level (Figure 1c); the statistical significance of the correlation between the two autocorrelated time series
was determined via a two‐tailed Student's t test. This result suggests that the first mode is strongly
related to the QBO. The pattern of the first EOF mode (Figure 1a) agrees with previous studies (e.g.,

Figure 2. As in Figure 1 but for the second EOF mode and the NINO3.4
index (red line in b). EOF = empirical orthogonal function; PC = principal
component.
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Randel & Wu, 1996) that investigated ozone anomalies associated
with the QBO. The second EOF mode has a bipolar structure, that
is, a negative phase of ozone in the tropical and SH lower strato-
sphere at 50°S–20°N and a positive phase in the NH at 20–50°N
(Figure 2a). This mode accounts for 19.8% of the variance. PC2
is correlated with the NINO3.4 index (Figure 2b, R = 0.62), which
leads PC2 variations by 3–4 months (Figure 2c). The pattern of the
second EOF mode (Figure 2a) agrees with that of ozone anomalies
caused by ENSO (e.g., Randel et al., 2009). The third EOF mode,
which accounts for 14.1% of the variance, shows a relatively uni-
form change, that is, a negative ozone phase in the lower strato-
sphere at 40°S to 40°N and positive phases in the middle
latitudes of both hemispheres at 50–40°S and at 40–50°N
(Figure 3a). The correlation coefficient between PC3 and the
ENSO Modoki index (EMI) is 0.21 when the EMI leads PC3 by
3 months (Figures 3b and 3c). The first three EOFs capture nearly
80% of the variance; therefore, the remaining modes only explain
less amount of variance and will not be used for further analysis
and discussions.

Table 1 provides the largest lead‐lag correlation coefficients (R),
together with their uncertainties, between the three leading PCs
and the QBO index, the canonical ENSO index, and the EMI. For
PC1, the correlation coefficient between PC1 and the QBO index is
the largest; for PC2, the largest value of R is obtained with the
NINO3.4 index; and for PC3, the largest R is between PC3 and the
EMI. Note that there is a great deal of uncertainty (Table 1) in the cor-
relation coefficients between PC2/PC3 and canonical ENSO/ENSO
Modoki, since there is a correlative relationship between canonical
ENSO and ENSO Modoki. To further check whether PC2 and PC3
are related respectively to canonical ENSO and ENSO Modoki, we
compared the patterns of correlation coefficients between sea surface
temperature anomalies and PC2/PC3 with SSTAs related to canoni-
cal ENSO and ENSO Modoki events. Figure 4 shows composite
SSTAs associated with canonical ENSO and ENSO Modoki events
during 2000–2016 (Figures 4a and 4b) and the spatial distribution of
correlation coefficients between SSTAs and PC2/PC3 variations
when the SSTAs lead PC2/PC3 by 3 months (Figures 4c and 4d).
Table 2 shows spatial correlation coefficients (SRs) among
Figures 4a, 4b, 4c, and 4d, together with their uncertainties. The pat-
tern of canonical ENSO‐related SSTAs (Figure 4a) is similar to the
spatial distribution of correlation coefficients between SST and PC2
variations (Figure 4c). The corresponding SR between Figures 4a
and 4c is 0.78 and significant at the 95% confidence level. Figure 4d
shows that the distribution of correlation coefficients between
SSTAs and PC3 variations is consistent with ENSO Modoki‐related
SSTAs (Figure 4b). The corresponding SR is 0.69 and significant at
the 95% confidence level. Table 2 shows that the SR between
Figures 4a and 4c is larger than that between Figures 4a and 4d,
and the SR between Figures 4b and 4d is larger than that between
Figures 4b and 4c. The spatial correlation further confirms that the
PC2 of ozone changes during 2000–2016 is more possibly associated
with canonical ENSO, and the third EOF mode is related to ENSO

Figure 3. Same as in Figure 1 but for the third EOF mode and the El Niño–
Southern Oscillation Modoki index (red line in b). EOF = empirical orthogonal
function; EMI = El Niño–Southern Oscillation Modoki index; PC = principal
component; QBO = quasi‐biennial oscillation.

Table 1
Largest Lead‐Lag Correlation Coefficients Between PC1/PC2/PC3 and QBO/
NINO3.4/EMI Indices Based on 2000–2016 Stratospheric Water and Ozone
Satellite Homogenized Data

QBO NINO3.4 EMI

PC1 0.75* (0.67, 0.80) 0.13 (−0.13, 0.15) −0.20 (−0.32, −0.06)
PC2 −0.21 (−0.22, 0.08) 0.62* (0.37, 0.68) 0.39* (0.39, 0.59)
PC3 0.19 (−0.02, 0.25) 0.15 (0.04, 0.30) 0.21* (−0.03, 0.24)

Note. Asterisks indicate that the correlation coefficient is significant at the 95%
confidence level. The values in brackets are the uncertainty range for the cor-
relation coefficient at the 95% confidence level. EMI = El Niño–Southern
Oscillation Modoki index; PC = principal component; QBO = quasi‐biennial
oscillation.
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Modoki. Note that the PC2 appears to be more correlated with canonical ENSO over the Indian Ocean but
more correlated with ENSO Modoki over the Atlantic Ocean. PC3 is more correlated with ENSO Modoki
over the Indian Ocean but more correlated with canonical ENSO over the Atlantic Ocean. This
phenomenon deserves further investigation.

Using merged ozone data, Camp et al. (2003) showed that the QBO is associated with the first EOF
mode of tropical TCO, accounting for nearly 42% of the variance. However, the second mode, which
accounts for nearly 33% of the variance, is also related to the QBO. The third mode, which accounts
for nearly 15% of the variance, represents an interaction between the QBO and an annual cycle. The
fourth mode, which accounts for only 3% of the variance, is associated with ENSO. Their result is quite
different with shown in this paper, which suggests that the influence of the QBO on ozone is dominated
in the first EOF mode. One of the main reasons for the difference between our results and those of
Camp et al. (2003) is that this study focuses on lower stratospheric ozone, whereas Camp et al.
(2003) analyzed changes in TCO. The change in TCO is dominated by ozone variability in the lower
to middle stratosphere, so that the QBO explains more variance than other factors. These findings imply
that the contribution of a given factor to stratospheric ozone variation can differ between
atmospheric layers.

An EOF analysis using TOMCAT/SLIMCAT simulation data was also performed to confirm the results
from the analysis of SWOOSH data. Figure 5 shows the EOF spatial patterns and PCs of lower strato-
spheric ozone variations based on TOMCAT/SLIMCAT data for 2000–2015 in the range 50°S to 50°N
and 100–50 hPa and the possible relevant impact factors of the leading three modes, respectively.
Modes 1–3 account for 50.0%, 25.1%, and 13.7% of the variance, respectively. These results are similar

Figure 4. (a) Composite SST anomalies (multiplied by −1) associated with canonical ENSO events for the period
2000–2016. (b) As in (a) but for ENSO Modoki. (c) The spatial distribution of correlation coefficients between SST
anomalies and PC2 variations when SST anomalies lead PC2 by 3 months. (d) As in (c) but for PC3. Details of canonical
ENSO and ENSOModoki events selected for composite analysis are given in Table 7. SST data are from the Hadley Center.
ENSO = El Niño–Southern Oscillation; PC = principal component; SST = sea surface temperature.

Table 2
The Corresponding SRs Among Figures 4a, 4b, 4c, and 4d

SRs SST & PC2 (Figure 4c) SST & PC3 (Figure 4d)

Canonical ENSO‐related SST (Figure 4a) 0.78* (0.71, 0.88) 0.42 (0.27, 0.61)
ENSO Modoki‐related SST (Figure 4b) 0.43 (0.39, 0.63) 0.69* (0.31, 0.70)

Note. Asterisks indicate that the correlation coefficient is significant at the 95% confidence level. The values in brackets
are the uncertainty range for the correlation coefficient at the 95% confidence level. ENSO = El Niño–Southern
Oscillation; PC = principal component; SR = spatial correlation coefficient; SST = sea surface temperature.
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to those obtained using the SWOOSH data. The first mode is related to the QBO (Figures 5a, 5d, and 5g).
PC2 is correlated with the NINO3.4 index (Figure 5e, R = 0.37), which leads PC2 variations by 4–5
months (Figure 5h). This implies that the second EOF mode is related to canonical ENSO events. The
third EOF mode is related to ENSO Modoki; the correlation coefficient between PC3 and the EMI is
0.47 when the EMI leads PC3 by 4–5 months (Figures 5c, 5f, and 5i). Table 3 provides the largest lead‐
lag correlation coefficients, together with their corresponding uncertainties, between PC1–PC3 and the
QBO, canonical ENSO, and ENSO Modoki indices. The values imply that PC1, PC2, and PC3 are asso-
ciated with the QBO, canonical ENSO, and ENSO Modoki, respectively. These conclusions are consistent
with those obtained using observations (Table 1).

The above analyses focus only on lower stratospheric ozone changes during the period 2000–2016. Both
EOF analysis based on SWOOSH observations and TOMCAT/SLIMCAT simulation suggest that the first,
second, and third modes of ozone changes are related to QBO, canonical ENSO, and ENSO Modoki
events, respectively. In order to investigate if the after/before 2000 have different results, we next repeat
the analyses but focus on changes prior to 2000. Figures 6a–6c show the EOF spatial patterns of lower
stratospheric ozone variations from 1984 to 2000 based on SWOOSH data matching the same latitudes
and pressure levels as for the 2000–2016 period. Modes 1–3 account for 30.7%, 25.8%, and 11.7% of the
variance, respectively. The first EOF mode (Figure 6a) is similar to that based on SWOOSH data for

2000–2016 (Figure 1a). Regarding the second and third modes,
however, there are large discrepancies between the results for the
1984–2000 period and those for the 2000–2016 period. Specifically,
in comparing Figures 6b and 6c with Figures 2a and 3a, it is evident
that the second and third EOF modes have opposite signs in the
two periods. This implies that during 1984–2000 the second EOF
mode of lower stratospheric ozone variation was related to ENSO
Modoki and the third EOF mode was associated with canonical
ENSO. Further analysis suggests that the times series of PC1,
PC2, and PC3 are correlated with the QBO, EMI, and NINO3.4
indices, respectively (not shown). Figure 6d shows the distribution

Figure 5. (a, d, and g) As in Figures 1a–1c; (b, e, and h) as in Figures 2a–2c; and (c, f, and i) as in Figures 3a–3c but
for ozone anomalies calculated using TOMCAT/SLIMCAT data for 2000–2015. Ozone anomalies were obtained by
removing the annual cycle and linear trend from the original time series. EOF = empirical orthogonal function; EMI = El
Niño–Southern Oscillation Modoki index; PC = principal component; QBO = quasi‐biennial oscillation.

Table 3
As in Table 1 but for TOMCAT/SLIMCAT Model Data for 2000–2015

QBO NINO3.4 EMI

PC1 0.79* (0.67, 0.81) 0.16 (−0.08, 0.20) −0.15 (−0.22, 0.06)
PC2 −0.30* (−0.52, −0.28) 0.37* (−0.04, 0.40) 0.21 (−0.03, 0.25)
PC3 0.28* (0.08, 0.35) 0.27* (0.06, 0.33) 0.47* (0.19, 0.51)

Note. EMI = El Niño–Southern Oscillation Modoki index; PC = principal com-
ponent; QBO = quasi‐biennial oscillation.
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of correlation coefficients between PC2 and variation in SSTAs. The pattern is similar to that of ENSO
Modoki SSTAs (Ashok & Yamagata, 2009; Yeh et al., 2009). The explained variance of the second EOF
mode (25.8%), which is related to ENSO Modoki, is nearly twice that of the third EOF mode (11.7%),
which is related to canonical ENSO.

Figures 7a–7c show the EOF spatial patterns of lower stratospheric ozone variations from 1984 to 2000
based on TOMCAT/SLIMCAT data matching the same latitudes and pressure levels. The first mode
accounts for 45.7% of the variance (Figure 7a). The variance of the second and third modes is 22.9%
and 12.9%, respectively (Figures 7b and 7c). These results are consistent with the results based on

Figure 6. EOF analysis of zonal mean ozone variability for the period 1984–2000 based on Stratospheric Water and Ozone
Satellite Homogenized data for 50°S to 50°N and 100–50 hPa. (a–c) Spatial patterns of EOF modes 1–3. (d) Spatial
distribution of correlation coefficients between SST and PC2 variations with SST leading PC2 by 3 months.
EOF = empirical orthogonal function; PC = principal component; SST = sea surface temperature.

Figure 7. As in Figure 6 but based on TOMCAT/SLIMCAT data. EOF = empirical orthogonal function; PC = principal
component; SST = sea surface temperature.
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SWOOSH observations (Figure 6). The spatial distribution of correlation coefficients between PC2 and
SST anomaly variation (Figure 7d) is similar to that of ENSO Modoki SSTAs. The results in Figure 7
further confirm that the first, second, and third modes of lower stratospheric ozone variation between
1984 and 2000 correspond to QBO, EMI, and NINO3.4 activity, respectively.

4. Mechanisms by Which the QBO and Two Types of ENSO Affect Interannual
Variations in Lower Stratospheric Ozone

The zonal wind anomalies caused by the QBO lead to the dynamical transport of ozone in the middle‐
upper stratosphere; in addition, a feedback of nitrogen (NOx) distribution anomalies as a result of the
QBO phase can affect ozone via chemical processes in the middle stratosphere (Randel & Wu, 1996;
Wallace et al., 1993). ENSO events can significantly influence the BD circulation. For example, enhanced
upwelling during El Niño events transports ozone‐poor air in the tropics from the troposphere to the stra-
tosphere, which leads to a significant ozone decrease in the lower‐middle stratosphere (Camp et al., 2003;
Dhomse et al., 2008; Randel et al., 2009; Xie, Li, Tian, Zhang, & Sun, 2014). As a result, the upwelling
tends to decrease tropical stratospheric ozone. In addition, the upwelling anomalies can affect ozone by
influencing the loss rate in the hydrogen (HOx) cycle (Meul et al., 2014). For example, increased upwel-
ling reduces the fractional chlorine release from organic source gases by reducing the time available
for photolysis.

We now analyze the dynamical and chemical effects of QBO, canonical ENSO, and ENSO Modoki
events on lower stratospheric ozone. Figures 8a–8c show the differences in composite ozone anomalies
between the west and east phases of QBO events (i.e., west phase minus east phase) during 1984–

Figure 8. (a) Differences in composite ozone anomalies between the west and east phases (i.e., west phase minus east
phase) of quasi‐biennial oscillation events (Table 4), based on TOMCAT/SLIMCAT ozone data for 1984–2015. (b) As in
(a) but for dynamical ozone. (c) As in (a) but for chemical ozone. (d) As in (a) but for the BD circulation, calculated from
the National Centers for Environmental Prediction Reanalysis 2. Canonical ENSO and ENSO Modoki signals were
removed from ozone anomaly series by regression analysis before performing the composite analysis. Hatching indicates
areas where the correlation coefficients are statistically significant at the 90% confidence level. BD = Brewer‐Dobson;
ENSO = El Niño–Southern Oscillation.
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2015 (Table 4) and the corresponding dynamic and chemical ozone anomalies derived from
TOMCAT/SLIMCAT simulations. Compared with the east QBO, the west QBO causes an increase of
ozone in the tropical lower stratosphere but a decrease in the middle latitudes of both hemispheres
(Figure 8a). The decrease in the SH is larger than that in the NH. The pattern of ozone anomalies is
consistent with the first EOF mode of stratospheric ozone variation (Figure 1a). The pattern of

Table 4
Easterly Phases (Left Column) and Westerly Phases (Right Column) of Quasi‐Biennial Oscillation Events Between 1984
and 2016

Easterly phases (<−5 m/s) Westerly phases (>5 m/s)

January 1984 to December 1984 March 1985 to April 1986
July 1986 to July 1987 September 1987 to May 1988
May 1989 to February 1990 April 1990 to April 1991
July 1991 to July 1992 November 1992 to June 1993
November 1993 to October 1994 December 1994 to September 1995
January 1996 to December 1996 April 1997 to November 1997
April 1998 to November 1998 February 1999 to December 1999
June 2000 to October 2001 March 2000
April 2003 to December 2003 February 2002 to October 2002
April 2005 to February 2006 March 2004 to October 2004
April 2007 to January 2008 May 2006 to December 2006
June 2009 to July 2010 April 2008 to April 2009
November 2011 to January 2013 September 2010 to May 2011
June 2014 to May 2015 April 2013 to April 2014

July 2015 to December 2015

Figure 9. As in Figure 8 but for canonical ENSO events (warm phase minus cold phase). The selected canonical ENSO
events are listed in Table 5. Quasi‐biennial oscillation and ENSO Modoki signals were removed from ozone anomaly
series by regression analysis before performing the composite analysis. BD = Brewer‐Dobson; ENSO = El Niño–Southern
Oscillation.
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dynamical ozone anomalies (Figure 8b) is similar to that of total ozone anomalies (Figure 8a), while the
pattern of chemical ozone anomalies (Figure 8c) is opposite to that of total ozone anomalies (Figure 8a).
This implies that dynamical and chemical processes caused by the QBO have opposite effects on lower
stratospheric ozone. In addition, the effect of dynamical processes on total ozone anomalies is 3–4 times
greater than the effect of chemical processes. The west phase of the QBO causes anomalous
downwelling in the stratosphere in the lower latitudes but anomalous upwelling in the middle
latitudes (Figure 8d), resulting in a positive anomaly of ozone in the tropical lower stratosphere but a
negative anomaly in the middle latitudes. Chipperfield et al. (1994) demonstrated from model results
that the two‐cell structure in lower stratospheric ozone is due to the mean vertical transport.
However, the decrease of ozone in the tropical lower stratosphere and the increase in the middle
latitudes (Figure 8c) are due to reactive nitrogen (NOy) associated with chemical process in the
middle stratosphere (Chipperfield et al., 1994; Randel & Wu, 1996).

Figure 9 shows the differences in composite ozone anomalies between warm and cold phases (i.e., warm
phase minus cold phase) of canonical ENSO events from 1984–2015 (Table 5) and the corresponding
dynamical and chemical ozone anomalies. The pattern shown in Figure 9a agrees with the corresponding
EOF modes (Figure 2a), with negative ozone anomalies in the tropical and SH lower stratosphere and
positive ozone anomalies in the NH. Figures 9b and 9c show that dynamic processes dominate changes
in lower stratospheric ozone; chemical processes lead to positive ozone anomalies in the tropical and
lower stratosphere of the SH but negative ozone anomalies in the middle latitudes of the NH. During
El Niño phases of ENSO, enhanced tropical upwelling (Figure 9d) transports more ozone‐poor air from
the troposphere to the stratosphere (Fueglistaler & Haynes, 2005; Geller et al., 2002; Gettelman et al.,
2001; Hatsushika & Yamazaki, 2003; Scaife et al., 2003; Xie, Li, Tian, Zhang, & Shu, 2014). In addition,
downwelling anomalies are found in the NH (Figure 9d). The presence of downwelling anomalies
explains the increase of ozone in the NH due to changes in the BD circulation. A faster (slower) circula-
tion in general would slow (speed up) ozone destruction cycles caused by NOx, HOx, Clx, and Brx catalytic
cycles (Tian et al., 2009). This result explains the pattern of chemical ozone anomalies in the lower
stratosphere (Figure 9c).

The differences in composite ozone anomalies between warm and cold phases (i.e., warm phase minus
cold phase) of ENSO Modoki events from 1984–2015 (Table 6) are shown in Figure 10. The pattern of
ozone anomalies (Figure 10a) is similar to the third EOF mode of lower stratospheric ozone variations
(Figure 3a). Namely, the negative anomaly of ozone in the stratosphere (Figure 10a) is similar to that

Table 6
El Niño Modoki and La Niña Modoki Events During 1984–2000 and 2001–2016

Time (years) El Niño Modoki La Niña Modoki

1984–2000 October 1990 to June 1991 October 1988 to April 1989
August 1991 to June 1992 March 1998 to May 1999
June 1994 to May 1995 November 1999 to May 2000

2001–2016 July 2009 to March 2010 January 2008 to September 2008
August 2010 to April 2011

Table 5
Canonical El Niño and Canonical La Niña Events During 1984–2000 and 2001–2016

Time (years) Canonical El Niño Canonical La Niña

1984–2000 October 1986 to December 1987 May 1988 to April 1989
June 1997 to April 1998 October 1998 to August 1999

2001–2016 June 2002 to January 2003 September 2007 to March 2008
August 2006 to January 2007 August 2010 to March 2011
April 2015 to December 2015
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shown in Figure 3a. Figure 10b illustrates that dynamic transport causes stratospheric ozone to
increase in the middle and high latitudes of the SH. The ozone decrease in the stratosphere in the
middle and high latitudes of the SH is the combined effect of dynamic transport (Figure 10b) and che-
mical destruction (Figure 10c). The dynamical and chemical ozone anomalies correspond to the
enhanced upwelling in the lower latitudes and anomalous downwelling in the middle latitudes of
the SH (Figure 10d).

The above analysis poses an interesting question: Why did ENSO Modoki have a greater impact on
ozone than canonical ENSO before 2000 and a weaker impact after 2000? The occurrence of canoni-

cal ENSO and ENSO Modoki events for the periods 1984–2000
and 2001–2016 are listed in Table 7, and the definitions of the
two types of ENSO event follow Yu et al. (2012). There was a
high frequency of ENSO Modoki events between 1980 and 2000
(Ashok & Yamagata, 2009; Yeh et al., 2009). After 2000, the
frequency of canonical ENSO is higher than that of ENSO
Modoki events. These results suggest ENSO Modoki events had
a greater impact on lower stratospheric ozone before 2000.
Figure 11 shows the differences in composite BD circulation
anomalies between warm and cold phases of canonical ENSO
and ENSO Modoki events for 1984–2000 and 2001–2016. The
BD circulation in the tropical lower stratosphere is stronger
during ENSO Modoki events (Figure 11b) than during canonical
ENSO events for the period 1984–2000 (Figure 11a), whereas the
opposite is true the 2001–2016 period.

Table 7
Canonical El Niño and El Niño Modoki Events During 1984–2000 and 2001–2016

The type of event 1984–2000 2001–2016

Canonical El Niño 1986/1987 2002/2003
1997/1998 2006/2007

2015/2016
El Niño Modoki 1990/1991 2009/2010

1991/1992
1994/1995

Note. The definitions of the two types of El Niño–Southern Oscillation event
follow Yu et al. (2012).

Figure 10. As in Figure 8 but for ENSO Modoki events (warm phase minus cold phase). The selected ENSO Modoki
events are listed in Table 6. Canonical ENSO and quasi‐biennial oscillation signals were removed from ozone anomaly
series by regression analysis before performing the composite analysis. BD = Brewer‐Dobson; ENSO = El Niño–Southern
Oscillation.
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5. Conclusions

We investigated interannual variations in lower stratospheric ozone from 1984 to 2016 using SWOOSH
observational data and TOMCAT/SLIMCAT model simulation data. Based on EOF analysis of lower strato-
spheric ozone from 2000 to 2016, we find that the first three EOFs capture nearly 80% of the variance. The
first, second, and third modes are related to QBO, canonical ENSO, and ENSO Modoki events, respectively.
During 1984–2000 the first mode is also related the QBO. However, unlike the 2000–2016 period, the second
mode is related to ENSO Modoki and the third mode to canonical ENSO events. Furthermore, during the
1984–2000 period the explained variance of the second mode is twice that of the third mode. Since the fre-
quency of ENSO Modoki events was higher than that of canonical ENSO between 1984 and 2000, the BD
circulation anomalies related to ENSO Modoki were stronger than those related to canonical ENSO. This
led to ENSO Modoki events having a greater impact on lower stratospheric ozone before 2000 than after.

The influences of dynamic processes and chemical processes related to QBO, canonical ENSO, and ENSO
Modoki events on lower stratospheric ozone were also analyzed. Dynamical processes related to the west
phase of the QBO cause an increase in ozone in the tropical lower stratosphere but a decrease in the middle
latitudes of both hemispheres, while chemical processes related to the west QBO phase have the opposite
impact on ozone. In contrast, the effect of dynamical ozone is 3–4 times greater than that of chemical ozone.
Dynamical processes related to the warm phase of canonical ENSO events cause negative ozone anomalies
in the tropical and the SH lower stratosphere and an increase in the NH, while chemical processes related to
warm canonical ENSO events lead to negative ozone anomalies in the tropical and SH lower stratosphere

Figure 11. (a) Differences in BD circulation anomalies between warm and cold phases of (a) canonical ENSO and
(b) ENSO Modoki events for 1984–2000. (c, d) As in (a) and (b) but for the 2000–2016 period. BD = Brewer‐Dobson;
ENSO = El Niño–Southern Oscillation.
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but a weak impact on NH lower stratospheric ozone. Dynamical processes related to the warm phase of
ENSO Modoki increase ozone in the middle latitude stratosphere of the SH but decrease ozone in the lower
latitude stratosphere, due to the combined effect of dynamic transport and chemical destruction.

Although factors that drive interannual changes in ozone have been extensively analyzed in the past, it is
known that these contributions vary over time. Therefore, we analyzed interannual changes in lower strato-
spheric ozone over the past 30 years. We find that as the strength of canonical ENSO and ENSO Modoki
events varies over time, their relative contributions to ozone variation also vary. Therefore, predicting future
changes in ENSO will benefit the prediction of future changes in lower stratospheric ozone. It has been sug-
gested that in the context of continued global warming, both types of ENSO event might become stronger
and more frequent. Future studies should consider whether the contribution of ENSO activities to variation
in lower stratospheric ozone is likely to continue to increase in the future and whether it will eventually
exceed that of the QBO.
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